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An account is given of the molecular replacement method as

implemented in the package AMoRe. The overall strategy of

the method is presented and the main functions used in the

package are described. The most important features of

AMoRe are the quality of the fast rotation and translation

functions and the facility of multiple inputs to translation and

rigid-body re®nement functions, which allow for a fast

multiple exploration of crystal con®gurations with a high

level of automation.
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1. Introduction

The idea of molecular replacement is to build a tentative

crystal structure using known molecular models similar to the

actual molecules that constitute the crystal in order to start

model building or re®nement. The problem is to determine the

positions of the models within the crystal cell. This is ulti-

mately performed by comparing observed and calculated

structure factors for selected positions of the independent

molecules within the cell. In AMoRe, the comparison essen-

tially involves the correlation coef®cient in terms of ampli-

tudes. This criterion was chosen in the light of the results

available one decade ago, results that now may be considered

as corresponding to easy or moderately dif®cult MR problems.

At that time, an exhaustive positional search involving in

general six variables per independent model using that simple

but robust criterion could not be envisaged. Nowadays, a full

six-dimensional search would also be too lengthy, although

feasible. This explains, perhaps, the fact that the original ideas

of Rossmann and Blow, i.e. the splitting of the search into two

consecutive three-dimensional ones, are still found in ®ligree

in most MR packages.

The main programs in AMoRe aim at selecting a certain

number of positions, obtained through the exhaustive

exploration of three-dimensional domains with fast functions,

and computing the correlation coef®cients associated with

these positions. The idea is to assess many crystal con®gura-

tions, as it is the contrast in the values of the criterion that gives

one con®dence in the solution. The fast functions, rotation

functions and translation functions are either improved

versions of already proposed ones or new ones. Accurate and

fast algorithms are used throughout the package in order to

save computing time. In particular, molecular scattering

factors replace coordinates, which are used only once in the

whole procedure.

The main stream in AMoRe is the set of values of the

variables that specify the positions of the independent models

within the crystal, from which structure factors and inputs to
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the fast functions are calculated. We will ®rst de®ne these

variables and their relationship to the calculated structure

factors. We will then describe the strategy for the selection of

con®gurations.

2. Positional variables and crystal configurations

The position of the molecular model within the crystal is

determined by the rotation R and the translation T that move

the model from a reference initial position, speci®ed by the

atomic vectors {ro}, to the current position, speci®ed by the

atomic vectors {r},

r � Rro � T: �1�
The translation T is usually given in fractional coordinates

(x, y, z) in the crystal cell. The rotation R is parameterized

with the Euler angles (', �,  ) associated with an orthonormal

frame (X, Y, Z). Several conventions exist for the names of

angles and de®nitions of the axes involved in this para-

meterization. We will follow the convention by which (', �,  )

denotes a rotation of  about the Z axis, followed by a rota-

tion of � about the Y axis and ®nally a rotation of ' about the

Z axis,

R�'; �;  � � R�';Z�R��;Y�R� ;Z�: �2�
The angles take values within the parallelepiped {0 � ' < 360;

0 � � � 180; 0 �  < 360�}. For � = 0 or 180�, only the

combinations ' +  or ' ÿ  are independent, respectively.

The initial position of the model is usually chosen with its

center of mass placed at the origin and its principal axes of

inertia parallel to the orthonormal frame, as this leads to an

ef®cient sampling of con®gurations. A good choice for the

orthonormal frame is Z parallel to the highest crystal

symmetry axis (nort = 0 in AMoRe). This choice restricts the

orientational search to {0 � ' < 36/n}, where n is the order of

the rotational symmetry around Z.

Therefore, given the models' initial positions, the crystal

unit-cell parameters, the space-group symmetry and the

orientation of the orthonormal frame, a crystal con®guration

is uniquely determined by giving the positions of the in-

dependent molecular models within the unit cell, expressed in

terms of the positional variables,

#m0 'm0 �m0  m0 xm0 ym0 zm0

# . . . . . . . . . . . . . . . . . . . . .
#m 'm �m  m xm ym zm:

The labels m0, . . . , m identify the molecules and the molecular

models. Note that some of these models may coincide.

3. Structure-factor calculation

The calculated structure factors are conveniently written in

terms of the individual molecular scattering factors fm(s), i.e.

the Fourier transform of the electron density corresponding to

the isolated molecule in its initial position. These molecular

scattering factors are computed with the TABLING program,

which translates the model coordinates so that the center of

mass is at the origin and rotates the coordinates so that the

model's principal axes of inertia are parallel to the model box.

An electron density is then constructed and eventually

transformed by Fast Fourier techniques. One feature of

AMoRe is that the model may well be an electron density or

an electron-microscopy reconstruction, as only the Fourier

coef®cients are used.

If Rm and Tm denote the rotation and translation that de®ne

the molecule's current position, Mg and tg the space-group

transformation matrix and translation vector of the gth

symmetry operation and H the coordinates of a crystal reci-

procal vector, the contribution of molecule m to the calculated

crystal structure factor is

PG
g�1

fm�HMgDRmOm� exp�2�iH�MgTm�tg��: �3�

D and Om are orthogonalizing and deorthogonalizing

matrices. In fact, DRmOm is simply the rotation matrix Rm

expressed in a mixed basis: it applies (from left to right) to

reciprocal coordinates (Miller indices) in the crystal and

produces reciprocal coordinates in the model box. If there are

M independent molecules we have to add M terms like this.

Assuming that the individual molecular scattering factors

fm(s) have been set to a common scale, we have

Fcal
H �

PM
m�1

PG
g�1

fm�HMgDRmOm� exp�2�iH�MgTm�tg��: �4�

4. Correlation coefficient

As stated in the introduction, the agreement criterion to assess

crystal con®gurations is the (linear) correlation coef®cient

between observed and calculated amplitudes,

CCF �
P
H

jFobs
H j � jFcal

H j
� �� P

H

jFobs
H j

2
� �

� P
H

jFcal
H j

2
� �� �1=2

;

�5�
where jFHj denotes a `centered' variable, e.g.

jFHj � jFHj ÿ hjFHji; �6�
and h� � �i means average over re¯ections. CCF takes values in

the interval (1, ÿ1).

5. Strategy

The overall strategy of MR as implemented in AMoRe is easily

understood if we consider the correlation coef®cient between

intensities

CCI �
P
H

Iobs
H � Ical

H

� �� P
H

Iobs
H

2
� �

� P
H

Ical
H

2
� �� �1=2

�7�

as the target function for screening. The calculated total

intensity is given by



Ical
H �

PM
m;m0�1

PG
g;g0�1

fm�HMgDRmOm�fm0 �HMg0DRm0Om0 �

� exp�2�iH�MgTm�tgÿMg0Tm0ÿtg0 ��; �8�

where the overline means `complex conjugate'. The positional

variables entering into this expression are successively deter-

mined by using different approximations to Ical
H and, accord-

ingly, CCI. The protocol consists of three main steps.

(i) Rotation search. For each of the M molecules, determine

their possible orientations. The calculated intensities are

approximated by

Ical
H '

PG
g�1

jfm�HMgDRmOm�j2 �9�

and the highest peaks of CCI (as a function of Rm) are

selected. This function is essentially the direct rotation func-

tion (Delano & BruÈ nger, 1995). Even though CCI, with Ical
H

given by (9), cannot be calculated by standard fast techniques,

available computing resources allow for a point-by-point

evaluation of CCI at an average speed of �3 � 10ÿ7 s per

re¯ection and per symmetry operation on a 500 MHz Digital

XP1000.

(ii) One-body translation search. For each molecule and for

each selected orientation, determine the possible translations.

The calculated intensities are approximated by

Ical
H '

PG
g;g0�1

fm�HMgDRmOm�fm�HMg0DRmOm�

� expf2�iH��MgÿMg0 �Tm�tgÿtg0 �g: �10�
CCI (as a function of Tm) is evaluated by FFT (Navaza &

Vernoslova, 1995) within the Cheshire cell. The assessed

(partial) crystal con®gurations are given by

#m 'm �m  m xm ym zm CCI :

The positions corresponding to the top one-body con®gura-

tions are then re®ned; that with highest value of CCI is

assumed to be correct.

(iii) n-body translation search. When many independent

molecules or molecular fragments have to be positioned, the

contribution of already placed models dramatically increases

the chances of success of the method. If M0 < M molecules are

already positioned (say those with labels m0 2 P), then for the

top orientations of the remaining molecules (m =2 P), deter-

mine the possible translations. The calculated intensities are

approximated by

Ical
H '

P
m02P

PG
g0;g�1

fm0 �HMg0DRm0Om0 �fm�HMgDRmOm�

� exp�2�iH�Mg0Tm0�tg0ÿMgTmÿtg��
� fm�HMgDRmOm�fm0 �HMg0DRm0Om0 �
� exp�2�iH�MgTm�tgÿMg0Tm0ÿtg0 ��: �11�

CCI (as a function of Tm) is evaluated by FFT, now within the

whole crystal cell. The assessed (partial) crystal con®gurations

are now given by

#m0 'm0 �m0  m0 xm0 ym0 zm0

# . . . . . . . . . . . . . . . . . . . . .
#m 'm �m  m xm ym zm CCI;

where CCI corresponds to the whole (M0 + 1)-body con®g-

uration. The positions corresponding to the best con®gura-

tions are then re®ned and that with highest value of CCI is

assumed to be a correct one.

(iv) Repeat the preceding step until M0 = M.

The actual protocol in AMoRe differs from the one above

mainly in the rotational search. The ROTING program, based

on the fast rotation function proposed by Crowther, is used to

determine the possible orientations of the models (Crowther,

1972). Also, as previously stated, the crystal con®gurations are

assessed with CCF instead of CCI. The translations of the

oriented models (one-body and n-body searches) are deter-

mined with the TRAING program. Several translation func-

tions have been incorporated, among which the one described

in the above protocol, i.e. CCI as a function of Tm. The

re®nement of the positional variables is performed with the

fast rigid-body re®nement program FITING (Castellano et al.,

1992). These fast functions will be described in the following

section.

A situation where this protocol fails is often one in which a

six-dimensional search fails too. As a rule, this corresponds to

a poor quality of the search model or a small size of the search

fragment with respect to the asymmetric unit content.

The fast structure-factor calculation algorithm (4), the

performance of ROTING and the facility of multiple inputs to

TRAING and FITING allow for a fast multiple exploration. A

link between the input/output of the above programs allows

for automation. In fact, three levels of automation may be

distinguished.

Level I: automation is here reduced to the possibility of

multiple inputs to the main programs.

Level II: inputs to the main programs are created by

selecting and combining putative solutions.

Level III: a protocol for the whole MR problem is created,

starting from general purpose control parameters.

6. Description of the fast search programs

6.1. The ROTING program

It is possible to determine the rotations R that superimpose

a search molecule upon the homologous ones within the target

crystal by calculating the overlap within a conveniently chosen

region 
 of volume v of the observed Patterson function (the

target function Pt) and a rotated version of the Patterson

function corresponding to the isolated search molecule (the

search function Ps),

R�R� � 1

v

R



Pt�r�Ps�Rÿ1r� d3r �12�
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(Rossmann & Blow, 1962).R should display a local maximum

for the sought rotations. Note that when we rotate the search

function Ps by R, its argument contains Rÿ1.

It may be useful to compare rotation functions obtained

under different conditions. For this, some kind of normal-

ization is needed. In fact, R is cast into the form of a corre-

lation coef®cient by dividing (12) by the norms of the

truncated Patterson functions,

RN�R� �
R



Pt�r�Ps�Rÿ1r� d3r

� R



Pt�r�2 d3r
R



Ps�r�2 d3r

� �1=2

:

�13�
The reciprocal-space formulation of (12) is obtained by

replacing the Patterson functions by their Fourier summations

P�r� �P
h

I�h�
V

exp�ÿ2�ihr�: �14�

Taking into account that I(ÿh) = I(h), we obtain

R�R� �P
h

P
k

It�h�
Vt

Is�k�
Vs

1

v

R



exp�2�i�hÿ kRÿ1�r� d3r

�P
h

P
k

It�h�
Vt

Is�k�
Vs

�
�hÿ kRÿ1�: �15�

�
 is the Fourier transform of the function that takes the value

1 within 
 and 0 outside. In principle, the domain of inte-

gration could have any shape. However, in order to take full

advantage of the properties of the rotation group, 
 is usually

chosen as a spherical domain of radius b. Letting s = hÿ kRÿ1

for short, we have

�b�s� �
3

4�b3

Rb
0

R�
0

R2�
0

exp�2�isr�r2 sin��� dr d� d'

� 3
sin�2�sb� ÿ 2�sb cos�2�sb�

�2�sb�3 : �16�

Although simple, the resulting expression for the rotation

function has the disadvantage of containing entangled h, k

and R contributions, which renders its computation time

consuming if the whole domain of rotations has to be

explored. The dif®culty may be overcome by expanding the

exponentials entering into (15) in spherical harmonics, Yl,m.

Taking advantage of their transformation under rotations and

using recurrence relationships between spherical Bessel

functions jl, we obtain

�b�hÿ kRÿ1�
�P1

l�0

jl�2�hb�jlÿ1�2�kb�2�kbÿ jl�2�kb�jlÿ1�2�hb�2�hb

�2�hb�2 ÿ �2�kb�2

� Pl

m;m0�ÿl

Yl;m�h=h�Yl;m0 �k=k�Dl
m;m0 �R�

�P1
l�0

P1
n�1

12��2�l � 2n� ÿ 1� jl�2nÿ1�2�hb�
2�hb

jl�2nÿ1�2�kb�
2�kb

� �
� Pl

m;m0�ÿl

Yl;m�h=h�Yl;m0 �k=k�Dl
m;m0 �R�; �17�

where Dl
m;m0 are the matrices of the irreducible representa-

tions of the rotation group. The awkwardness of (17) is

apparent rather than real.

(i) The expression separates angular from crystal variables.

It also separates target from search contributions.

(ii) The equation is accurate, even when truncating the

summations on l and n to reasonable values. The upper limit

for l is of the order of the highest argument of the spherical

Bessel functions,

lmax ' 2�b=dmin;

where dmin is the resolution of the data. The upper limit for n

depends on the current value of l,

nmax�l� ' �lmax ÿ l � 2�=2:

(iii) When the rotations are parameterized in Euler angles

(', �,  ), the matrices Dl
m;m0 take the form

Dl
m;m0 �'; �;  � � dl

m;m0 ��� exp�i�m'�m0 ��; �18�
which enables the computation of R for each given value of �
by means of two-dimensional fast Fourier transforms.

This formulation is referred to as the fast rotation function

(Crowther, 1972).

6.2. Computing the fast rotation function

The calculations are organized as follows.

(i) Given the search and the target diffraction data,

compute

el;m;n � f12��2�l � 2n� ÿ 1�g1=2

�P
h

I�h�
V

Yl;m�h=h� jl�2nÿ1�2�hb�
2�hb

�19�

and normalize (to compute RN instead of R)

el;m;n ! el;m;n

� Pmax

l�2

Pl

m�ÿl

Pnmax�l�

n�1

jel;m;nj2
� �

: �20�

Odd l terms disappear because the Friedel related re¯ections

contribute with opposite signs,

I�ÿh�Yl;m�ÿh=h� � �ÿ1�lI�h�Yl;m�h=h�:
Also, if the Patterson function has an n-fold rotation axis

along Z, only the terms with m equal to a multiple of n survive.

(ii) Given the el;m;n values, perform the sums

Cl
m;m0 �

Pnmax�l�

n�1

e
�t�
l;m;ne

�s�
l;m0;n: �21�

(iii) For each � value, calculate the reduced matrix elements

dl
m;m0 and compute

Sm;m0 ��� �
Plmax

l�2

Cl
m;m0d

l
m;m0 ���: �22�

Then evaluate the � section of RN by FFT,

RN�'; �;  � �
Plmax

m;m0�ÿlmax

Sm;m0 ��� exp�i�m'�m0 ��: �23�



The sampling in ' and  here is dictated by the standard FFT

requirements.

RN is used in AMoRe just to select a certain number of

peaks. The output of ROTING contains, besides the values of

RN , those of the correlation coef®cients (CCF and CCI as in

P1) for each of the selected orientations. CCF is more ef®cient,

in general.

6.3. The locked rotation function

The rotational NCS, determined with the help of the self-

rotation function, may be used to enhance the signal-to-noise

ratio of cross-rotation functions (Rossmann et al., 1972; Tong

& Rossmann, 1990). If Sn, n = 1, . . . , N denotes the set of NCS

rotations, including the identity, and R is a correct orientation

of the cross rotation, then SnR must also correspond to a

correct orientation. Here, we are assuming that the rotational

NCS forms a group. Otherwise, either SnR or Sÿ1
n R, but not

both, corresponds to another correct orientation. Therefore, a

function may be de®ned, the locked cross rotation, whose

values are the average of the values of R at orientations

related by the NCS,

RL�R� �
PN
n�1

R�SnR�=N: �24�

By rede®ning the target function, it can be computed as an

ordinary cross rotation. Indeed, RL may be written in a form

similar to (12),

RL�R� �
PN
n�1

1

v

R



Pt�r�Ps�Rÿ1Sÿ1
n r� d3r=N

� 1

v

R



PN
n�1

Pt�Snr�=N

� �
Ps�Rÿ1r� d3r; �25�

with the target Patterson function substituted by the average

over the NCS of the rotated target functions. The computation

of (25) is particularly simple in the case of the fast rotation

function. The substitution

e
�t�
l;m;n !

Pl

m0�ÿl

PN
n�1

Dl
m;m0 �Sn�=N

� �
e
�t�
l;m0;n; �26�

where we replaced the sum over Sÿ1
n by a sum over Sn, because

of the rearrangement theorem of group theory, gives the

required target coef®cients.

6.4. The TRAING program

The possible translations of an oriented model are selected

in AMoRe by means of fast translation functions computed

with the TRAING program. The output of this program

contains, besides the values of the fast translation function,

those of CCF, CCI and the R factor for each of the selected

translations. Several fast translation functions may be calcu-

lated. If we write the Fourier coef®cient of the oriented model,

rotated by a given Rm and placed at T, as

Fcal
H �T� �

PG
g�1

�fm�HMgDRmOm� exp�2�iHtg�� exp�2�iHMgT�

� PG
g�1

um
g �H� exp�2�iHMgT� �27�

(see equation 3) and the corresponding intensity as

Ical
H �T� �

PG
g;g0�1

fm�HMgDRmOm�fm�HMg0DRmOm�

� expf2�iH��MgÿMg0 �T�tgÿtg0 �g

� PG
g;g0�1

um
g �H�um

g0 �H� exp�2�iH�MgÿMg0 �T� �28�

(see equation 10), then the options are (same notation as in

equations 6 and 7)

(i) centered overlap,

CO�T� �P
H

Iobs
H � Ical

H �T� �29�

/ PG
g;g0�1

P
H

Iobs
H um

g �H�um
g0 �H� exp�ÿ2�iH�MgÿMg0 �T�;

(ii) Harada±Lifchitz (Harada et al., 1981)

HL�T� � P
H

Iobs
H � Ical

H �T�
� ��P

H

Ical
H �T�; �30�

(iii) correlation coef®cient

CC�T� � P
H

Iobs
H � Ical

H �T�
� �� P

H

Iobs
H

2
� �

� P
H

Ical
H �T�

2
� �� �1=2

;

�31�
(iv) phased translation

(a) without `external' phases

PT�T� � PG
g;g0�1

P
H

�jFobs
H =um

g �H�j � jFobs
H =um

g0 �H�j ÿ 2SCAL�

� um
g �H�um

g0 �H� exp�ÿ2�iH�MgÿMg0 �T�; �32�
(b) with `external' phases 'ext

H

PTF�T� �P
H

jFobs
H j exp�i'ext

H � � Fcal
H �T�; �33�

(v) n-body translation with ®xed contribution Ffix
H

(a) phased translation

PTN�T� �P
H

Fobs
H

F fix
H

���� ����ÿ SCAL

� �
F fix

H � Fcal
H �T�; �34�

(b) for all others, replace

Fcal
H �T� ! Fcal

H �T� � F fix
H : �35�

SCAL is a scale factor to subtract the contribution of the

phasing position. The complex exponentials in (29) to (32)

depend on reciprocal vectors H(Mg ÿ Mg0), which are in the

Cheshire reciprocal cell (Hirshfeld, 1968).
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6.5. The FITING program

Although FITING is not a search program, we include it

here as it is one of the main molecular-replacement programs.

It performs rigid-body re®nement by a fast technique ®rst

proposed by Huber & Schneider (1985). The quadratic mis®tP
H

�
jFobs

H j ÿ
exp�BjHj2�

�

����XM

m�1

fm�HMgDRmOm�

� exp�2�iH�MgTm � tg��
�����2

�36�

is minimized with respect to the positional variables {Rm, Tm},

the overall scale factor � and the overall temperature factor B.
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